
Chess Engine Using Deep
Reinforcement Learning

Kamil Klosowski

916847

May 2019

Abstract

Reinforcement learning is one of the most rapidly developing areas of Artificial
Intelligence. The goal of this project is to analyse, implement and try to improve
on AlphaZero architecture presented by Google DeepMind team. To achieve this I
explore different architectures and methods of training neural networks as well as
techniques used for development of chess engines.

Project Dissertation submitted to Swansea University
in Partial Fulfilment for the Degree of Bachelor of Science

Department of Computer Science
Swansea University

Declaration

This work has not previously been accepted in substance for any degree and is not being
currently submitted for any degree.

May 13, 2019

Signed:

Statement 1

This dissertation is being submitted in partial fulfilment of the requirements for the
degree of a BSc in Computer Science.

May 13, 2019

Signed:

Statement 2

This dissertation is the result of my own independent work/investigation, except where
otherwise stated. Other sources are specifically acknowledged by clear cross referencing
to author, work, and pages using the bibliography/references. I understand that fail-
ure to do this amounts to plagiarism and will be considered grounds for failure of this
dissertation and the degree examination as a whole.

May 13, 2019

Signed:

Statement 3

I hereby give consent for my dissertation to be available for photocopying and for inter-
library loan, and for the title and summary to be made available to outside organisations.

May 13, 2019

Signed:

1 Acknowledgment

I would like to express my sincere gratitude to Dr Benjamin Mora for supervising this
project and his respect and understanding of my preference for largely unsupervised
work.

3

Contents

1 Acknowledgment 3

2 Introduction 5
2.1 Motivation behind the project . 5
2.2 Project Aims . 5

3 Background and related work 6
3.1 The beginnings . 6
3.2 First attempts . 6
3.3 Artificial Intelligence and the role of Checkers 7
3.4 Deep Blue and Deep Thought . 7
3.5 AlphaGo . 8
3.6 Modern Chess Engines . 8
3.7 Perceptron . 9
3.8 Early neural networks . 10
3.9 Convolutional neural networks . 10
3.10 Residual neural networks . 11
3.11 Reinforcement and Deep Reinforcement Learning 12
3.12 Bitboards . 13

4 Technological choices 14
4.1 Languages, Frameworks, and Hardware 14
4.2 Architecture . 15

5 Methodology 16

6 Risks 17

7 Scheduling and Software Life Cycle 18

8 Implementation 19
8.1 Prototype . 19
8.2 Graphical interface . 19
8.3 Chess engine - Validation . 21
8.4 Reinforcement Learning approach . 22
8.5 Supervised Learning approach . 24
8.6 Interfacing between subsystems . 25

9 Evaluation 25

10 Testing 26

11 Conclusions 27

4

2 Introduction

2.1 Motivation behind the project

Ever since I have started programming, I have been interested in chess engines. They
have always impressed me with the performance the authors were able to achieve and
created in me a long-standing ambition to create one myself. During my programming
”career” my interests have gradually shifted as I have explored different fields of com-
puter science but I have never abandoned my plan to created a chess program. Recently
I have got heavily involved in a field of data science and spent a considerable amount
of my time exploring different achievements and breakthroughs of the past decade. The
recent explosion in the availability of data and computational power, allowed a relatively
old concept of neural networks to resurface and finally be utilised to its full potential.
The last few years in the field of Artificial Intelligence are considered by many experts to
be the beginning of the fourth industrial revolution[20][19]. Ever since the AlexNet[10],
a convolutional neural network, placed first in the ImageNet Large Scale Visual Recog-
nition Challenge by achieving top-5 error rate of 15.3% which outperformed the second
place contender by 10.8%, neural networks continued to outperform traditional methods
in many applications. In 2017, DeepMind published a highly influential paper about
a generalized neural network architecture that was able to outperform top engines in
Chess, Shogi and Go by learning only from self-play[21]. Reading this article inspired
me to finally fulfil my ambition and create a chess engine based on the presented archi-
tecture. The fact that DeepMind is yet to publicise the engine they have used, combined
with the vagueness of the description of used techniques, makes this a perfect project for
this dissertation.

2.2 Project Aims

The primary aim of this project is to create a chess engine, utilising artificial neural
networks, being able to compete with humans and improve from continuous self-play
training. To achieve this, I will implement an architecture proposed in a Google’s Deep-
Mind’s AlphaZero paper [21]. This objective can be considered very ambitious and poses
a high possibility of failure. Despite this, the project offers a great opportunity for exper-
imentation and, even if the goals are not achieved, it can present a variety of interesting
and potentially innovative insights.

5

3 Background and related work

3.1 The beginnings

One of the earliest works on the topic of computer chess is a paper published by Claude
E. Shannon [6] in 1949 where he theorized about the feasibility of a computer routine
for a “modern” general purpose computer which would allow it to play chess. Possi-
ble problems to which a said routine could be generalized were also outlined, the list
included language translation, military strategy, music creation, and even logical deduc-
tion. Shannon proposed two different strategies for the game, first based on John Von
Neumann’s Minimax Theorem [13] using brute-force evaluation of the game tree and a
second one which decreases the size of the search tree by introducing a “plausible move”
evaluation. He explained how the first approach is not a viable option because of the
enormous amount of possible games that would have to be evaluated which he estimated
to be at least 10120 which is today known as a “Shannon number”. If every atom in
the universe(1080) were to compute a single static evaluation every nanosecond since
the birth of the universe(1018) we would still be over 20 orders of magnitude short from
solving chess. This fact alone makes any attempts of solving chess using brute-force
ultimately futile. The second approach was inspired by observing human grandmasters
which is closely connected to the scope of this project. In order to create an evaluation
function, traditionally, multiple handcrafted features are used. The list includes material
point values, positional imbalances, piece mobility, pawn structure, king safety and many
other features usually extracted with a help of a human chess expert [21]. This approach
creates an obvious limitation, program created in this manner will never be able to learn
new features on its own thus restraining the possible strength of the program.

3.2 First attempts

In 1948 Alan Touring created an algorithm called Turochamp which is the earliest known
computer game algorithm. He described it in an article called “Chess” originally pub-
lished in a book “Faster than thought” [23]. Although it was never implemented, Touring
tested it by executing the algorithm “by hand” but the game was lost. Not long after
Touring’s publication, a student of his, Dietrich Prinz created an actual program to
solve “Mate-in-Two” problems. The reason he was not able to create a full-scale chess
engine was the lack of computing power provided by the available to him Ferranti Mark
1 computer at Manchester University. Said machine was able to evaluate around 30
positions per minute which was far from sufficient to play a full game of chess. To put
this into perspective, modern chess engine Stockfish 8 is able to evaluate 7∗107 positions
per second using a 64 thread CPU[21]. Prinz described his results in a chapter “Robot
Chess” published in a “Computer Chess Compendium”[14].

6

3.3 Artificial Intelligence and the role of Checkers

The term “Artificial Intelligence” is said to be first created during the Dartmouth Con-
ference in 1956 [12]. This month-long event attracted many leading figures in the field of
machine learning, including Nathaniel Rochester and Arthur Samuel, IBM researchers
who would later become part of the team that created the first Checkers AI program that
ran on the IBM 701. The choice of this game wasn’t accidental, it provided the same
type of challenge that Chess and Go did, while offering manageable size of the game
tree. The program was able to reach a better-than-human level of play after only 10
hours of computations. Although it was based on Minimax, the researchers augmented
the algorithm with machine-learning strategies. One of them was to create a database
of already visited branches of the game tree that was constantly updated during the
game which significantly decreased the computing load. Additionally to replay memory,
the algorithm was equipped with a dynamic evaluation function which was updated to
minimise the estimation error after finishing each game. This approach is similar to cur-
rently used reinforcement learning techniques that will be used in this project. Samuel
summarised the observations of his team and the techniques they used in his summary
paper on machine learning in checkers[17].

Today the game of checkers has been ”solved” [18]. Jonathan Schaeffer has proven
that perfect play always results in a draw. Calculations took over a decade, using from
50 up to 200 computers running the computations non-stop in parallel. The product of
this experiment is an endgame database containing 39 trillion positions. He also released
an updated version of his original checkers engine called Chinook, currently the engine
cannot be beaten and the best achievable result is a draw. In his paper, Schaeffer also
concluded that the number of checkers moves is roughly a square root of those in chess
and that a significant breakthrough like quantum computing would be required to solve
chess even weakly.

3.4 Deep Blue and Deep Thought

The victory of Deep Blue over world champion Gary Kasparov in 1997 was perhaps
the most significant event in the history of Artificial Intelligence up until very recently.
This game was the culmination of several iterations of chess engines and over a decade
of work put into achieving the success. It began with a rivalry between two teams of
researchers and their chess computers, Hitech and ChipTest. Both teams attempted
to create computers consisting of, specifically designed for chess evaluation, integrated
circuits. Hitech soon became the first chess computer to beat a human grandmaster in a
tournament, winning against Arnold Denker with a score of 3 1

2 out of 4 games. ChipTest
was capable of evaluating 500,000 positions per second at the time. Behind the successes
of both computers stood Feng-Hsiung Hsu who initially worked on Hitech but left, due
to disagreement about what he considered to be an architectural flaw in the design, and
started his work on ChipTest. Technologies he developed were later used to build Deep
Thought, a computer able to evaluate 720,000 moves a second which won 1989 World
Computer Chess Championship with a perfect score. Later that year, Deep Thought
took on Gary Kasparov in 2 game match but lost both of the games. With freshly
acquired backing from IMB the project was renamed to Deep Blue and vastly improved.
In February 1996 it faced the Kasparov again and lost with a score 4-2 drawing 2 games

7

and winning 1. Single win was enough to convince researchers to further heavily upgrade
the computer which gave it an unofficial nickname of ”Deeper Blue”. It was this version
of the machine that faced Kasparov again in a historical match that changed the history
of Artificial Intelligence. At the time capable of analysing 107 moves per second, Deep
Blue won the match with a score of 3 1

2 − 2 1
2

3.5 AlphaGo

Chinese game of Go is considered to be one of the hardest challenges of machine learning.
With a board size of 19x19, typical game length of 200 moves and an average branching
factor of 35, Go is inherently unsuitable for the methods used in other board game
engines. Traditional Go engines possessed a level of play comparable to a novice human
players. In 2016 DeepMind’s Go engine[22] has achieved what few thought possible, it
defeated Lee Sedol who is considered to be the greatest player of the past decade and
18 time world champion. In an event watched by over 200 million people, AlphaGo won
a 5 game match with a score of 4-1. This also made it the first computer program to
be granted a professional rank of 9th dan. This event was comparable to Deep Blue’s
victory in terms of impact on artificial intelligence field.

3.6 Modern Chess Engines

Despite significant breakthroughs in the field of computer chess and deep learning, en-
gines based on artificial neural networks still are not doing as well as their more tradi-
tional counterparts. Currently, in CCRL 40/40 ranking [Fig. 1] in top 10, there is not
a single engine utilising deep learning. Most relevant to this project entry, in said rank-
ing, is Leela Chess Zero, an open source engine that is based on the original AlphaZero
architecture. Leela became popular as it quickly increased in strength. Many strong
grandmasters tested it and concluded that Leela’s tactics are significantly different from
those presented by engines based on MiniMax principles. It often favours positions that
other engines evaluate as losing, which shows a certain level of what could be described
as ”human intuition”. By allowing volunteers to contribute computational power to the
project, Leela is continuously gaining in strength.

Figure 1: Current standings of CCRL 40/40 computer chess ranking. [24]

8

3.7 Perceptron

The development of neural networks started with a very simple idea of a perceptron.
It was conceived by a psychologist Frank Rosenblatt who attempted to create a math-
ematical representation of the operations that neurons perform in a human brain [15].
This model in various modified forms now serves as a basis for all artificial neural net-
works. The perceptron consists of a number of inputs that represent connections to other
neurons. Those connections have unique weights which model the strength of synaptic
connections to the input neuron. The connections are then aggregated and passed to
the activation function which based on a certain threshold determines if the neuron
propagates the impulse down the network. The original perceptron also had a bias input
which was always set to 1, this simplified the computation of various activation functions.
Rosenblatt’s work was based on previous research conducted by Warren McCulloch and
Walter Pitts which proved that a system composed of several neural units can perform
binary logical operations such as OR, AND and NOT[16]. This was believed to be a huge
step forward in the development of artificial intelligence. Even with such a monumental
step forward, a single factor was missing, an ability to learn. At the time the process
in which the human brain learned and acquired information was largely unknown. Don-
ald Hebb proposed an idea that the retention of information occurs when a repeatedly
stressed neuron undergoes a process of growth on a synaptic level [2]. This makes the
transition of electric impulses through that connection easier and activates the neuron
faster. This is linked to the idea of weight in the perceptron.

Figure 2: Perceptron schematic

9

The arrangement of perceptron units in layers, created a multi-layered perceptron
which is the prototypal model of what we now know as a neural network. By applying this
concept and recreating it with custom hardware, Rosenblatt created a machine capable
of classifying shapes from a small 20x20 array of inputs, he called it Mark I Perceptron.
The exact same model can now be easily recreated in modern machine learning libraries
and it is often a gateway project when learning about artificial intelligence. The most
popular dataset for this problem is MNIST which is a set 10000 samples of 20x20 pixel
handwritten digits. Currently, the state of the art neural networks achieved 99.79%
correctness of classification.

3.8 Early neural networks

The advancements made by Rosenblatt propelled a wave of research focusing on per-
ceptrons and possible areas where they can be used. However, the research quickly
stagnated when the researchers were unable to effectively train the networks. The com-
plexity of calculations grew rapidly with the size of the network. The progress required
a breakthrough which came in the form of a backpropagation algorithm. The algorithm
was derived by several researchers at the beginning of 1960 decade and was implemented
to run on a computer by Seppo Linnainmaa in 1976 [11]. Process of backpropagation
was recursive and iterative which allowed for easier training and updating of weights
inside the network. The idea was to input data into the neural network and compared
the output with a predetermined label which was taken as truth. The error was then
calculated and propagated backwards through the network while updating the weight
parameters. This process is currently being used in state of the art neural networks.
The confirmation of the viability of neural networks came in 1989 with the paper called
”Multilayer feedforward networks are universal approximators” which proved that neural
networks can be used to implement any function[9].

3.9 Convolutional neural networks

Convolutional neural networks were the next step in the development of neural networks,
they shared many similarities with ordinary multi-layered perceptrons by using the same
mechanisms for weights, biases and connections. The main difference was the structure
of layers. Instead of using a 2-dimensional architecture, a 3-dimensional one is used.
This change was necessitated by the fact that ordinary neural networks don’t scale well
with input size. For example, to input a 256*256 RGB image into the network for the
purpose of classification and the usage with computer vision programs, 196608 input
neurons would have to be used. This equates to 256*256 pixels * 3 colour channels.
Networks of this size are extremally hard to train and don’t generalise well. The solution
to this problem is a convolutional layer, it consists of a stack of 2-dimensional arrays,
in this example 3 arrays the size of 256*256. This input is then aggregated with the
help of pooling. Pooling is a process of feature extraction by transforming the image
into smaller subsamples of the same image. The image is then further sampled down
into what’s called feature maps. Each subsequent subsampling lets the network focus
on finer details of the image. Convolutional networks usually end with a fully-connected
layer followed by the output layer which size is determined by the number of categories
to classify. This type of network proved to be the best known approach for image

10

classification although several challenges needed to be overcome. One of them was the
difficulty of propagating an error through the network with a higher depth. Some of
the convolutional networks can reach over a 1000 layers of depth which introduces the
problem of vanishing gradients [8]. This problem is currently solved by using residual
neural networks.

3.10 Residual neural networks

To fix the vanishing gradient problem, Microsoft researchers came up with a relatively
simple solution that revolutionised the field of computer vision. They proposed an archi-
tecture where the layers of a network were separated into blocks. Each block consisted
of two layers with batch normalisation and RELU activation. To the output of the sec-
ond layer before the activation function, a skip connection was added. This special skip
connection is simply an identity connection with output values of the previous residual
block. This architecture ensures that all parts of the network receive input that isn’t
diminished by the previous layers. Using this approach, researchers were able to effec-
tively train networks with 1202 layers [7]. They also argue that even though the error
rate is slightly higher than that of 110-layer network, it is likely due to overfitting on a
too small of a dataset. They also suggested the usage of strong regularization such as
maxout or dropout to mitigate this problem.

Figure 3: Residual network block

Since the original ResNet paper, other variations of this architecture have been pro-
posed and demonstrated success and improvements over basic ResNet. One of the evolu-
tions was introduced by Facebook Ai Research team in collaboration with UC San Diego
researchers. It is called ResNeXt and uses parallel layers inside blocks. It has shown
to be more robust and achieve better accuracy, however at the cost of computational
complexity [25].

11

Figure 4: ResNeXt residual block

3.11 Reinforcement and Deep Reinforcement Learning

Reinforcement learning is an area of machine learning that focuses on training a cer-
tain agent to navigate a specified environment. It is a subset of unsupervised learning.
The goal is to achieve a certain task without domain knowledge. At the beginning,
the reinforcement agent usually starts with no knowledge of the domain. It acquires
said knowledge by performing initially random actions, knowing only the desired result.
This approach is particularly useful when the conditions that lead to a certain result
are unknown. Currently, the reinforcement learning approaches are being employed with
success in areas such as game artificial intelligence, self-driving cars and robotics. In-
side the reinforcement learning, there are two main strategies, positive and negative
reinforcement. Both of those strategies can be used in conjunction to achieve the goal.
Using the example of self-driving cars, the positive goal would be to drive the highest
number of miles without human intervention whereas negative reinforcement would be
used when a car steers off the road or particularly heavy negative reward could be used
when the car injures a human. A subarea which is currently receiving the most attention
from the international research community is deep reinforcement learning. The main
difference between classic and deep reinforcement learning is the usage of neural net-
works. The flexibility of the architecture of neural networks enabled this area of research
to progress very rapidly. In theory, if one can specify the task and the conditions for
both success and failure, a neural network agent can be trained to perform that task
with sufficient computational power. This is precisely the approach that produced the
international success of AlphaGo and Alpha Zero. One of the main disadvantages of
this method is the need for extreme amounts of computational power. By looking at
the data provided in the AlphaZero paper the authors inform us that the final version
of the engine was trained using 5000 of Google’s proprietary TPUs (Tensor Processing
Units) for 400 hours. To put it in terms of consumer hardware, one 1st generation TPU
has the computational capacity of approximately 10 Nvidia GTX1080ti[1] graphics cards
(Fastest consumer graphics card available at that time). This means that the training
computation used for that model equates to 2283 years of computational time using a

12

single GTX1080ti and around 4500 years using GTX1060 that I personally have access
to. This enormous requirement for power is the reason that only the biggest technology
companies are able to compete in this field.

3.12 Bitboards

Bitboards are binary data structures used to represent the state of a board game in the
computer memory. Depending on the type of the game, different sizes are used. In the
case of chess, a piece centric approach is used. Every piece type is represented by a
64-bit number, the presence of a positive bit indicates the position of a certain piece on
the board. Two different bitboards are used to distinguish between the white and black
pieces. A total of 12, 64-bit bitboards is needed to represent the piece positions in chess
with additional data structures (which can also be bitboards) needed to represent the
additional game state elements such as the castling, the number of moves without any
progress and the draw condition.

Different kinds of mappings (Endianness) can be used to represent the piece positions
on the bitboard, the most popular type of mapping is Little-Endian Rank-File mapping.
In this mapping, the least significant bit represents the A1 square and the most significant
represents the H8 square. As the name suggests the bit ordering follows the ranks first
and then the files. Different types of mappings are equally viable and do not differ in
the performance, the choice of the Little-Endian Rank-File mapping in this project is
strictly due to preference.

Moves on bitboards are represented as bitmasks and executed using binary operations.
Although there are methods to simplify the move process, most of the moves are not
easily generalizable and require at least some ’hardcoding’ which increases the complexity
of this type of representation. Regardless of the added complexity, the use of bitboards is
the most efficient representation method, both memory and computational complexity-
wise.

13

4 Technological choices

4.1 Languages, Frameworks, and Hardware

The project is split into two distinct and independent parts, namely graphical interface
implementing the Universal Chess Interface protocol to allow for visualising of the game
state and move validation and the chess engine itself.

The first part uses Java with JavaFX framework. After considering multiple lan-
guages, I have come to the conclusion that Java is best suited to this task. The main
reason for this choice is my familiarity with the language. There are other more efficient
languages that could be used to accomplish this task such as C or C++ that would
ensure higher performance for move evaluation. However, after considering all pros and
cons, I have come to a conclusion that for the scope of this project, the time that would
be saved during training step by selecting a more efficient programming language can
be offset by a faster time of implementation which is significantly shortened by remov-
ing the need to research and learn a different language. As for the graphical interface
framework, JavaFX was the most obvious choice, it is easy to use and I already possess
a sufficient level of knowledge of it.

The second part which is the chess engine is going to be implemented using Python
3.X and TensorFlow framework. Python is the most popular programming language for
machine learning and I am already proficient in it. TensorFlow is arguably the best deep
learning framework with great support and is actively developed by Google engineers
which makes it a perfect choice for this project. The availability of training material is
great with plentiful books, videos and free online tutorials.

For the neural network training I will initially use a Nvidia GTX 1060 6GB, de-
pending on the rate of convergence and the speed of the training I have also considered
using Google Cloud which makes available for the general public, Google’s proprietary
Tensor Processing Units which are specifically designed for the use with TensorFlow
AI accelerators that offer disproportionately higher performance compared to standard
GPUs.

14

4.2 Architecture

Graphical Interface
Simple graphical interface will be implemented using JavaFX to allow for quick
visual inspection of the board state. In later stages user interface displaying the
current position strength estimation, move history using algebraic notation, move
and game controls (move withdrawal, resign, draw offering) and user menu, as well
as game history will be implemented.

Legal Move Evaluation
The move evaluation will be implemented using Little-Endian Rank-File mapping
of bitboards and bitwise operations to provide sufficient performance and quick
game tree search. Java 8 Streams will be heavily utilised to accomplish quick
collections operations while building the game tree. Instead of traditional Alpha-
Beta tree search, Monte Carlo Tree Search will be used which will be combined
with the neural network evaluation.

Domain knowledge
The only domain knowledge available to the engine in the initial part of the project
will be the rules of chess. Usage of other chess specific features will be considered
after achieving a working solution.

Communication Layer
To combine the evaluation part of the engine with the graphical interface, Univer-
sal Chess Interface protocol will be implemented. This will allow for easy swapping
of the graphical layers and will make it compatible with different commercial in-
terfaces.

Neural Network
The final neural network architecture will be heavily influenced by this of Alp-
haZero. However, as DeepMind’s paper leaves out most of the details, the struc-
ture of the network will be subject to experimentation and decided after conducting
more research.

Component Decoupling
I aim to create a highly decoupled structure of the program. Due to the usage
of different programming languages for different parts of the project, most of the
communication between components will be achieved via a console interface. This
architectural decision will create high interchangeability and different graphical
interfaces will be possible to be connected to the engine itself. Testing will also be
significantly simplified as each part of the program can be assessed independently.

15

5 Methodology

The software engineering methodology that I have chosen to use during this project is
Extreme Programming and specifically scaled down to a single person team Personal
Extreme Programming (PXP) proposed by R. Agrawak and D. Umphress [4]. The
reasons for this choice are as follows:

1. XP can be scaled down to a single person team.

2. It is innately suited to changing requirements which might occur during the devel-
opment of this project.

3. Release planning and release schedules allow for partitioning of large tasks into
small achievable releases which ensures steady progress and prevents a backlog
creep.

4. Iterative nature of the methodology allows for constant improvements and exper-
imentation which is imperative in the case of a chess engine as the program upon
initial completion is highly unlikely to perform competitively.

5. It ensures that the code is written to a high standard which I plan to uphold with
code reviews with a help of a colleague.

6. Unit testing mitigates the problem of hard to spot software bugs that are relatively
easy to overlook while programming alone.

7. Rapid code integration can be achieved with the help of version control (GitHub).

8. Simplicity of this methodology mitigates a large overhead and enables the user to
focus on the project.

9. Frequent refactoring encouragement of XP complements the scope of this project
perfectly as performance improvements will be an essential to the success of this
endeavour.

10. Acceptance testing will provide evaluation of the project and will allow me to
more accurately estimate the success chance of the project at different stages of
the development.

16

6 Risks

Insufficient computational power
Due to how computationally demanding neural networks are, it is very likely that
available to me hardware will not be sufficient to achieve satisfactory results. To
solve this I have set aside a budget that can be used to train the network in the
cloud.

Inaccurate time estimates
Unpredictable nature of this project makes it hard to accurately estimate the time
that each task will take. To mitigate this problem I have scheduled additional free
time for unpredictable complications.

Project too ambitious
The scope of the project is very broad and the technologies used are still very new.
Most of the knowledge required to complete the project is a result of scientific
papers published in the last two years. It is possible that I might not be able to
complete the project. To solve this I have scheduled enough time for research. In
case this was not enough, the project is still likely to produce valuable insights
even when not completed fully.

Steep framework learning curves
Although there is a lot of learning material available for TensorFlow, it is quickly
becoming outdated with the rapid release schedule of the framework. This makes
it hard to keep up with the current API. Similarly, the solution is more scheduled
time for learning.

Feature creep
In case of successful completion, the project offers a lot of useful features that
might be tempting to implement. This can cause neglection of other work required
for this dissertation. To not fall into trap of endless improvement, I intend to first
complete all required work and only then start working on code improvements.

Risk Description Prob. Severity Solution
Insufficient computational power 80% Medium Use cloud computing
Inaccurate time estimates 40% Medium Plan extra time
Project too ambitious 30% Medium Invest more time in research
Steep framework learning curves 40% Low Allow extra time for learning
Feature creep 20% Low Create initial specification

Table 1: Table of risks that might occur during the project development

17

7 Scheduling and Software Life Cycle

18

8 Implementation

8.1 Prototype

To evaluate the architecture, I have created a low fidelity prototype in the form of a Tic-
Tac-Toe program. I have chosen Tic-Tac-Toe as it poses the same type of challenge as
chess but provides a very easy solution as the entire game tree can be computed in a few
seconds and kept in the memory the entire time. Those characteristics enable me to focus
on the neural network architecture without worrying about performance optimisations
and allow me to easily fine-tune the hyperparameters and monitor the changes. I have
used a scaled-down and altered version of the neural network that I plan to use in the full
chess engine. The network takes in the current state of the board as input and outputs an
estimate of the score. To simplify the problem, it was formulated as a supervised learning
task. This was possible because of the availability of perfect evaluation function which
calculates the win probability based on the complete evaluation of the game tree from
the current position. Weights have been initialised randomly, leaky RELU activation
function was used in combination with Adam optimiser. The move with the highest
estimation according to the network was used, the program did not use any exploration
strategies. The network after 8 hours of training was able to achieve to 98% Win+Draw
performance losing only 2% of the games. The results were evaluated on 10,000 games
vs a random agent. A performance this high was predictable as the network learned with
perfect information and essentially memorised the entire game. The 2% loss rate might
have been caused by too big a size of the network, too small learning rate or too short
training time.

8.2 Graphical interface

After creating a prototype which validated the viability of this project I have started
the work on the user interface. The technologies I have chosen for this task are Java
and JavaFX. This choice was heavily influenced by my familiarity with Java and the
same task could have been achieved using Python. In retrospect, using Python would
make the integration of the engine with the GUI much simpler. The first part of this
stage was to create a chessboard representation itself. I have used Canvas element of
JavaFX to accomplish this. The pieces are rendered as separate images and redrawn
every time a change occurs on the board. This approach decouples the business logic
from the interface and allows me to focus on the engine logic and is a part of a design
pattern called MVC (Model View Controller) [5]. Every piece is identified by its ID
which consists of an encoded position on the board and the colour. This information
is accessed when interacting with the model itself and making the move. The graphics
controller interfaces with the engine to validate the legal moves and draws them in the
form of red dots. It is not possible to make a move other than those permitted by the
engine. Sourcing the information directly from the engine makes it easy to swap the
engine for another one, for example with another variant of chess (960, King of the hill
etc.). To determine the move, an event listener which detects a mouse drag over a piece
is used. The coordinates of the mouse are then translated to a square number by a
proportional division of the canvas and a simple calculation. If the move was legal the
board state is updated. After that, the opposing player or AI agent can make the move.

19

Figure 5: Main game window

When the chessboard UI was completed, I’ve implemented other elements of the
interface such as the new game screen, game result dialog and time controls. The new
game dialog allows the user to choose between a game with a human player and a game
against the computer AI. User is also able to select the time limit and the time increment
per move. The choice of the colour was also implemented but is currently disabled for the
purpose of simplifying the training of the neural network (The artificial intelligence can
only play black at this moment). To the right of the chessboard, user can see progress
bars with the remaining time and controls to offer a draw, resign or revert the move. To
finish the development of the user interface I have implemented the ”play again” dialog
which notifies the user about the end of the game and allows them to start a new game
and redirects them to a new game window.
As the focus of this project is directed mainly towards the development of a neural
network chess engine, I have decided to limit the graphical interface to a minimum to
save valuable development time.

20

Figure 6: Starting game dialog

8.3 Chess engine - Validation

One of the most important parts of any chess engine is are its evaluation functions.
For this part of the engine speed is crucial. To create this part I have used bitboards
and bit-shift operations. Bitboards allow the moves to be executed using direct processor
instructions and have the smallest possible memory requirements. The drawback of their
usage, however, is the vastly increased complexity of development. The representation
is hard to think of intuitively and every operation has to be implemented separately.
It is almost impossible to generalise moves and the bit shifting operations are unique
for every chess piece. The codebase developed using this method is hard to operate
in and some of the checks that need to be performed during a game require a lot of
effort to implement. Despite all the problems, the speed increase over object oriented
implementation is substantial. I was able to achieve an evaluation speed of 400.000
moves a second while calculating PERFT (Performance test for move path enumeration)
values. For comparison, Stockfish 10 engine was able to calculate 50 million moves per
second on my machine. This part of the engine is used when evaluating the moves of a
player as well as for the filtering of neural network moves.

21

8.4 Reinforcement Learning approach

The original approach used to train the Alpha Zero was reinforcement learning. The
neural network played against an older version of itself. This ensured that the agent
always played versus an opponent of sufficient strength. After a certain number of
iterations, the opponent network was replaced by a newer snapshot of the network and
the entire process was repeated until the network achieved the desired strength. The
networks started from the state of no knowledge of the game apart from the move
legality check that was applied separately after which illegal moves suggested by the
network were filtered out. Using this approach the network learns to suggest only legal
moves on its own. Although not specifically stated in the paper, the network will still
have a chance of suggesting a non-zero probability for an illegal move. This is due to
the fact that it is impossible to include the game rules within the network its dynamic
nature itself.
The implementation of this method proved to be more complicated than expected. There
is no explicit support within the TensorFlow for reinforcement learning models. To
bypass this limitation, I have used placeholder tensors which were populated with game
history after the conclusion of a game. After populating them, weights for the moves
that occurred during the game were applied retrospectively factoring for the discount
rate.

After considering different architectures I have decided to use a simple convolutional
neural network with the following architecture [Fig. 7].

Figure 7: Neural network architecture

22

The input of the network was a simplified version of that presented by DeepMind’s
team, twelve 8x8 binary arrays were used to represent the pieces on the board, one for
each piece types of both colours. I have decided to do not use other features used in the
paper for the sake of simplicity, they were unlikely to introduce any improvements on
the lowest level of the play.

The network consisted of 10 convolutional layers, each followed by a dropout layer.
The usage of dropout regularization allowed me to make the network more robust and
mitigate the risk of overfitting which was particularly high as the amount of training
data was limited. The AlphaZero used a much larger network with ResNet architecture
but this proved to be infeasible because of the increased requirement for training data
and the lowered speed of inference.

Finally, the output from the convolutional layers was flattened and converted to a
single fully connected layers with the size of 4096 followed by the softmax layer converting
the output to a probability distribution over the move-space. The size of the output
layer represents moves from each square of the board to any other. This is the simplest
representation of the move-space but it includes possible illegal moves. However as
previously mentioned, even when a non-zero probability for such moves occurs, they
are easily filtered out. Considering this, I’ve decided to use it as it reduces complexity
without major drawbacks, it is also the shape that AlphaZero used.

The hyperparameters were selected manually and where possible, values from my
previous projects that have proven to work well were reused. Methods such as grid-
search of hyperparameter space were infeasible because of computational complexity
and lack of an easy way for validation.

Taking into an account the computational complexity of this approach I was able to
generate around 200 games per hour which were not enough to even notice the improve-
ment in the strength of the engine even after 50 hours of training time. The model also
proved impossible to test. When matched against a random agent during 500 test games
the draw ratio was 100%. This is to be expected considering the branching factor of
chess and the end game move space. It is possible that the neural agent had strength
higher than a random sample but the improvement was too low to be measured.

This problem was identified by me early into the planning phase of this project and
was one of the highest risks. By extrapolating from the training graph of Alpha Zero we
can estimate that the engine required approximately 2 million games to reach 1000 Elo
and didn’t show noticeable improvement over random until after around 500.000 games
into training [Fig. 8]. Considering that the model I used was trained over 10.000 games
it predictable that the results would not be easily visible.

23

Figure 8: Training graph of AlphaZero. Each step consisted of 64 games.

There are also other possible reasons for no improvement, such as flawed network
architecture, badly selected hyperparameters or code errors. All of those problems are
very hard to resolve and require expert level knowledge of the neural networks.

8.5 Supervised Learning approach

After encountering the aforementioned problems, I have decided to modify the architec-
ture to address them. The training method was changed from reinforcement learning to
supervised learning. This method relies on introducing labelled examples to the engine
and making it try to approximate the result. To implement this approach I required a
database of chess games and only two options were available. One of them was to use
an existing database of expert games and train the engine on those examples, the other
option was to use an existing chess engine that uses traditional methods for calculation
and attempt to teach the network to mimic it. This method is often called supervised
pre-training, it is often used when either a limited dataset of labelled example is avail-
able for training or when the reinforcement learning problem is very hard to train from
scratch. Google has also used this method for the original AlphaGo to accelerate the
initial phases of the training, they have, however, since dropped this approach as it in-
troduced unwanted patterns into the engine. The reasoning was that the engine will be
able to become much stronger if the human element isn’t introduced into the system
thus eliminating any inefficient or bad play habits. I have chosen to use Stockfish10 as
the self-play engine and the python-chess library as a wrapper over it. Stockfish is an
open source engine and is available for anyone to download for free and the source code
is also open for anyone to contribute on GitHub. The engine was paired against itself
to produce a stream of games from which labels used to train the network were derived.
I have generated 10.000 games using this method and I am continuously training the
engine. The architecture of the network changed only slightly to change the input layer
from binary input to an integer representation of characters representing pieces on the
chessboard. This made it easier to parse the input from the games and should not change

24

the performance of the network. After training on the generated games the engine seems
to have improved in strength slightly, I will describe the results more thoroughly in the
evaluation section. This type of pre-training is a very easy pre-processing step that can
be later paired with the original approach. The trained model can be easily transferred
and further trained.

8.6 Interfacing between subsystems

Finally, to complete the integration between the chess engine created in Python and
the GUI created in Java, I have created a simple Python web API using Flask. This
allowed me to create a flexible connection between the two subsystems. Said API can be
hosted on any server and use any underlying hardware. The communication is performed
using HTTP protocol calls. This is different from the initial plan of using a UCI (Uni-
versal chess interface) but after careful consideration and considering the implemented
architecture, it is clearly a superior approach.

9 Evaluation

Considering the achieved performance of the trained neural network model it was hard
to measure it precisely. Even when attempting to compare the model to a random agent,
the measured performance did not exceed statistical error. This outcome is caused by the
problem previously explained, namely the complexity of the chess endgame. However,
when attempting to evaluate the engine manually, one can recognise that the moves per-
formed by the engine are noticeably different from that of the random agent. Although
not directly measurable, this demonstrates that the engine started to absorb patterns
from the games it was trained on. When comparing the different approaches, the most
notable change occurred after a large batch of 7000 games during the supervised pre-
training phase. I do however recognise that this effect has a chance of being my own
bias or placebo effect.

25

10 Testing

Testing of the entire system was performed in multiple phases. The graphical interface
was tested using manual testing. I have decided that this is the best approach which
satisfies the basic needs for this project. The focus of the project was directed towards
the engine itself and the interface was developed solely for demonstration purposes and
easier evaluation. During the testing, I have encountered several bugs which were fixed
according to their severity. To the best of my knowledge, there are no leftover bugs in
the user interface part.

The second part of the testing focused on the evaluation functions. This part was
decidedly the hardest to test. Because of the fact that the evaluation relies on bitboards
and the state of the board using unit tests to test it was impractical and inefficient time-
wise. To test the evaluation I have used the PERFT method. There are pre-made tables
available with the calculated numbers of possible moves in chess for selected positions,
comparing the number achieved by the developed engine running a move calculations
with a certain depth, I was able to detect the problems and identify the discrepancies
between the results. I was able to eliminate most of the encountered errors with the
exception of a few, hard to eliminate corner cases. The most notable example is the en
passant takedown discovered check. I have decided that it was not sensible to focus on the
hard to implement fixes from the project management perspective. Due to the limited
timescale and large complexity of the undertaken project, some of the errors remain
unfixed. The severity of those errors is not critical and unless the user purposefully tries
to break the system, the core functionality remains unaffected.

The testing of the neural network was performed by validating the input and output
to the network manually. It was possible to unit test this part of the system but the
time pressure did not allow me to do it.

The last part of the testing process was the smoke testing [3], also known as build
verification testing. The goal of this process is to ensure that the core functionality of the
fully integrated system works. This was done manually and to ensure that the system is
ready for presentation during the project fair.

26

11 Conclusions

The result of this project can be interpreted in multiple ways. I am inclined to consider
it a success. The scope of the project was admittedly too ambitious and in retrospect,
better suited for a doctoral thesis rather than bachelors dissertation. The topics covered
in this project are mostly results of the work of world-leading research teams backed
by considerable resources and manpower. It was unrealistic on my side to attempt to
replicate results that required months of research of a large company like Google and
its DeepMinds team as well as the computational power of the large server clusters
of specialised hardware. This project, however, resulted in myself committing several
hundreds of hours into research and development. This was an opportunity to develop
my knowledge and skills which is, in my opinion, the core goal of the 3rd year project.
I was able to complete the minimum viable product and have laid solid groundwork
and platform for future research and work on this project. If an opportunity arises I
would like to continue the work on this chess engine, perhaps during my master thesis.
As for the delivered system itself, disregarding the strength of the engine, it satisfies
all the requirements specified during the planning phase. The created neural network
presented promising results given limited hardware resources available. It is possible,
given a larger computational effort, that the engine would start to gain strength but as
described previously, this turned out impossible to evaluate. To summarise, I am satisfied
with the achieved result and have gained considerable experience in the machine learning
field during the development of this project. This experience will become very valuable
in my future endeavours and professional career.

27

References

[1] Contributing to leela chess zero. creating the caissa of chess engines.... - chess forums.

[2] Hebb, d. o. the organization of behavior: A neuropsychological theory. new york:
John wiley and sons, inc., 1949. 335 p. $4.00. Science Education, 34(5):336–337,
1950.

[3] Smoke testing, Jul 2018.

[4] Ravikant Agarwal and David Umphress. Extreme programming for a single person
team, 01 2008.

[5] F. Buschmann. Pattern-Oriented Software Architecture, A System of Patterns. Wi-
ley Series in Software Design Patterns. Wiley, 1996.

[6] Claude E. Shannon. Xxii. programming a computer for playing chess. 41:256–275,
03 1950.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[8] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recur-
rent nets: the difficulty of learning long-term dependencies. In S. C. Kremer and
J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE
Press, 2001.

[9] Kurt Hornik, Maxwell B Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1 1989.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[11] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16(2):146–160, Jun 1976.

[12] James Moor. The dartmouth college artificial intelligence conference: The next fifty
years. AiMagazine, 27, 12 2006.

[13] J. V. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100(1):295–320, 1928.

[14] D. Prinz. Robot chess. Computer Chess Compendium, page 213–219, 1988.

[15] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory,
1957.

[16] W S McCulloch and W Pitts. A logical calculus of the ideas immanent in nervous
activity. 1943. Bulletin of mathematical biology, 52:99–115; discussion 73, 02 1990.

28

[17] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):210–229, July 1959.

[18] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake, P. Lu, and
S. Sutphen. Checkers is solved. Science, 317(5844):1518–1522, jul 2007.

[19] K. Schwab. The fourth industrial revolution: what it means, how to
respond. (accessed: 2018-11-1) https://www.weforum.org/agenda/2016/01/the-
fourth-industrial-revolution-what-it-means-and-how-to-respond/.

[20] K. Schwab. The Fourth Industrial Revolution. Crown Publishing Group, 2017.

[21] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis.
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm. ArXiv e-prints, 2017.

[22] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
and et al. Mastering the game of go without human knowledge. Nature,
550(7676):354–359, 2017.

[23] Alan M. Turing. Chess. Computer Chess Compendium, page 14–17, 1988.

[24] www.computerchess.org. Ccrl 40/40 ranking (accessed: 2018-10-31).

[25] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggre-
gated residual transformations for deep neural networks. CoRR, abs/1611.05431,
2016.

29

